# ICSE Class 10 Previous Years Questions Mathematics Chapter-Banking/Recurring Deposit Account

The Brainbox Tutorials brings ICSE Class 10 Previous Years Questions from the chapter Banking/Recurring deposit account. Solving these PYQs will help you understand the pattern of questions asked in Board exams. It will also help you prepare for your upcoming Board Exams.

## ICSE Class 10 Previous Years Questions Mathematics Chapter-Banking

Q1. Naveen deposits Rs.800 every month in a recurring deposit account for 6 months. If he receives Rs.4884 at the time of maturity, then the interest he earns is:
(a) Rs. 84 (b) Rs.42 (c) Rs.24 (d) Rs.284 [2023]

Answer: (a) Rs.84

Step-by-step Explanation:

Monthly Instalment (P) = Rs.800

Time in months (n) = 6 months

Maturity Amount (A) = Rs.4884

$Interest\;=\;A\;-\;Pn\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;4884\;-\;800\times6\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;4884-4800\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;Rs.\;84$

Q2. Salman deposits Rs.1000 every month in a recurring deposit account for 2 years. If he receives Rs.26000 on maturity, find:
(i) The total interest Salman earns (ii) The rate of interest [2023]

Answer: (i) Rs. 2000 (ii) 8%

Step-by-step explanation:

Monthly Instalment (P) = Rs. 1000 ; Time in months (n) = 2 years = 2*12=24 months, Maturity Amount (A) = Rs. 26000

$(i)\;Interest\;=\;A\;-\;Pn\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;26000\;-\;1000\times24\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;26000-24000\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;Rs.\;2000\\(ii)\;I\;=\;\frac{P\times n(n+1)}{2\times12}\times\frac r{100}\\\;\;\;\;2000=\frac{1000\times24\times25\times r}{2\times12\times100}\\2000=250\;r\\\frac{2000}{250}=r\\8\;=\;r\\Rate\;of\;interest\;=\;8\%$

Q3. Mohit opened a recurring deposit account in a bank for 2 years. He deposits Rs.1000 every month and receives Rs.25500 on maturity. The interest he earned in 2 years is:
Rs.13500 (b) Rs.3000 (c) Rs.24000 (d) Rs.1500 [2021 Semester- 1]

Answer: (d) Rs. 1500

Step-by-step Explanation:

Monthly Instalment (P) = Rs. 1000 ; Time in months (n) = 2 years = 2*12=24 months, Maturity Amount (A) = Rs. 25500

$Interest\;=\;A\;-Pn\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;25500\;-\;1000\times24\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;=25500-24000\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;=1500\\Interest\;is\;Rs.\;1500$

Q4. A man deposited Rs.500 per month for 6 months and received Rs 3,300 as the maturity value. The interest received by him is:-
1950 (b) 300 (c) 2800 (d) None of these [2021 Semester-1]

Answer: (b) 300

Step-by-step explanation:

Monthly Instalment (P) = Rs. 500 ; Time in months (n) = 6 months, Maturity Amount (A) = Rs. 3300

$Interest\;=\;A\;-Pn\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;3300\;-\;500\times6\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;=3300-3000\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;=300\\Interest\;is\;Rs.\;300$

Q5. Joseph has a recurring deposit account in a bank for two years at the rate of 8% per annum simple interest.
(i) If at the time of maturity Joseph receives Rs. 2000 as interest then the monthly instalment is:
Rs.1200 (b) Rs.600 (c) Rs.1000 (d) Rs.1600

(ii) The total amount deposited in the bank:
Rs.25000 (b) Rs.24000 (c) Rs.26000 (d) Rs.23000

(iii) The amount Joseph receives on maturity is:
Rs.27000 (b) Rs.25000 (c) Rs.26000 (d) Rs.28000

(iv) If the monthly instalment is Rs.100 and the rate of interest is 8%, in how many months Joseph will receive Rs.52 as interest?
18 (b) 30 (c) 12 (d) 6 [2021 Semester- I]

Answer (i): (c) Rs. 1000

Step-by-step explanation:

Interest (I) = Rs. 2000 ; Time in months (n) = 2 years= 2*12 = 24 months, Rate of Interest (r) = 8%

$I\;=\;\frac{P\times n(n+1)}{2\times12}\times\frac r{100}\\2000=\frac{P\times24\times25\times8}{2\times12\times100}\\\frac{2000}2=P\\P=1000\\Monthly\;instalment\;is\;Rs.\;1000$

Answer (ii): (b) Rs. 24000

Step-by-step Explanation:

Total money deposited in the Bank = P x n = 1000 x 24 = Rs. 24000

Answer (iii): (c) Rs. 26000

Step-by-step Explanation:

Maturity Amount = Interest + Pn

= 2000 + 24000 = Rs. 26000

Answer (iv): ()

Step-by-step explanation:

Monthly Instalment (P) = Rs. 100 ; Rate of interest(r) = 8%, Interest (I) = Rs. 52

$I=\frac{P\times n(n+1)}{2\times12}\times\frac r{100}\\52=\frac{100\times n(n+1)\times8}{2\times12\times100}\\52=\frac{n(n+1)}3\\n^2+n=156\\n^2+n-156=0\\n^2+13n-12n-156=0\\n(n+13)-12(n+13)=0\\(n+13)(n-12)=0\\Either\;(n+13)=0\;\;OR\;(n-12)=0\\n=-13\;OR\;12\\n\;cannot\;be\;begative.\\Therefore,\;n\;=\;12\;months$

Q6. A man deposited Rs. 1200 in a recurring deposit account for 1 year at 5% per annum simple interest. The interest earned by him on maturity is
14790 (b) 390 (c) 4680 (d) 780 [2021 Semester-I]

Answer: (b) Rs. 390

Step-by-step explanation:

Monthly Instalment (P) = Rs. 1200 ; Rate of interest(r) = 5%, Time in months (n) = 1 year = 1*12 = 12 months

$I=\frac{P\times n(n+1)}{2\times12}\times\frac r{100}\\I=\frac{1200\times12\times13\times5}{2\times12\times100}\\I=390\\Therefore,\;Interest=\;Rs.\;390$

You can also see video solutions of these questions here.

Q7. Mr. Sonu has a recurring deposit account and deposits Rs 750 per month for 2 years. If he gets Rs. 19125 at the time of maturity, find the rate of interest. [2020]

Answer: 6%

Step-by-step explanation:

Monthly Instalment (P) = Rs. 750 ; Maturity Amount(A) = Rs. 19125, Time in months (n) = 2 years = 2*12 = 24 months

$Interest\;=\;A-Pn\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;=19125-750\times24\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;19125-18000\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;Rs.\;1125\\\\I=\frac{P\times n(n+1)}{2\times12}\times\frac r{100}\\1125=\frac{750\times24\times25\times r}{2\times12\times100}\\1125=\frac{375\;r}2\\375\;r=1125\times2\\r=\frac{1125\times2}{375}\\r=6\%\\Therefore,\;Rate\;of\;Interest=\;6\%$

Q8. Rekha opened a recurring deposit account for 20 months. The rate of interest is 9% per annum and Rekha receives 441 as interest at the time of maturity. Find the amount Rekha deposited each month. [2019]

Answer: Rs. 280

Step-by-step explanation:

Rate of interest (r) = 9% ; Interest(I) = Rs. 441, Time in months (n) = 20 months

$I=\frac{P\times n(n+1)}{2\times12}\times\frac r{100}\\441=\frac{P\times20\times21\times9}{2\times12\times100}\\441=\frac{P\times21\times3}{2\times4\times5}\\P=\frac{441\times2\times4\times5}{3\times21}\\P=280\\Therefore,\;monthly\;deposit\;=\;Rs.\;280.$

Q9. Sonia had a recurring deposit account in a bank and deposited Rs.600 per month for 2 1/2 years. If the rate of interest was 10% p.a., find the maturity value of this account. [3] [2018]

Answer: Rs. 20325

Step-by-step explanation:

Rate of interest (r) = 10% ; Monthly instalment (P) = Rs. 600, Time in months (n) = 5/2 years = 5/2*12 = 30 months

$I=\frac{P\times n(n+1)}{2\times12}\times\frac r{100}\\I=\frac{600\times30\times31\times10}{2\times12\times100}\\I=2325\\\\Maturity\;Amount\;=\;I\;+Pn\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;2325+600\times30\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;2325+18000\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=20325\\Therefore,\;Maturity\;Value\;is\;Rs.\;20325$

Q10. Priyanka has a recurring deposit account of ₹ 1000 per month at 10% per annum. If she gets ₹ 5550 as interest at the time of maturity, find the total time for which account has held. [3] [2018]

Answer: 3 years

Step-by-step explanation:

Monthly instalment (P) = Rs. 1000, Rate of interest (r) = 10% ; Interest (I) = Rs. 5550

$I=\frac{P\times n(n+1)}{2\times12}\times\frac r{100}\\5550=\frac{1000\times n(n+1)\times10}{2\times12\times100}\\5550=\frac{25\times n(n+1)}6\\n(n+1)=\frac{5550\times6}{25}\\n^2+n=1332\\n^2+n-1332=0\\n^2+37n-36n-1332=0\\n(n+37)-36(n+37)=0\\(n+37)(n-36)=0\\Euther\;n+37\;=0\;OR\;n-36=0\\Either\;n=-37\;or\;36\\months\;cannot\;be\;negative.\\Therefore,\;n\;=\;36\;months\;=\;3\;years$

Q11. Mr. Richard has a recurring deposit account in a bank for 3 years at 7.5% p.a. simple interest. If he gets ₹ 8325 as interest at the time of maturity, find:

(i) the monthly deposit. (ii) the amount of maturity.[3] [2017]

Answer: (i) Rs. 2000 (ii) Rs. 80325

Step-by-step explanation:

Rate of interest (r) = 7.5%, Interest(I) = Rs. 8325, Time in months (n) = 3 years = 3*12 = 36 months

$(i)\;I=\frac{P\times n(n+1)}{2\times12}\times\frac r{100}\\8325=\frac{P\times36\times37\times7.5}{2\times12\times100}\\8325=\frac{P\times9\times37}{2\times40}\\P=\frac{8325\times2\times40}{9\times37}\\P=1332\\P=2000\\Therefore,\;monthly\;deposit\;=\;Rs.\;2000\\\\(ii)\;A=\;I+Pn\\\;\;\;\;\;\;\;\;\;=\;8325+2000\times36\\\;\;\;\;\;\;\;\;\;=8325+72000\\\;\;\;\;\;\;\;\;\;=80325\\Maturity\;Value\;is\;Rs.\;80325$

Q12. Mohan has a recurring deposit account in a bank for 2 years at 6% p.a. simple interest. If he gets Rs.1200 as interest at the time of maturity, find :

(i) the monthly installment. (ii) the amount of maturity.[3] [2016]

Answer: (i) Rs. 800 (ii) Rs. 20400

Step-by-step expanation:

Rate of interest (r) = 6%, Interest(I) = Rs. 1200, Time in months (n) = 2 years = 2*12 = 24 months

$(i)\;I=\frac{P\times n(n+1)}{2\times12}\times\frac r{100}\\1200=\frac{P\times24\times25\times6}{2\times12\times100}\\1200=\frac{P\times3}2\\P=\frac{1200\times2}3\\P=800\\Therefore,\;monthly\;deposit\;=\;Rs.\;800\\\\(ii)\;A=\;I+Pn\\\;\;\;\;\;\;\;\;\;=\;1200+800\times24\\\;\;\;\;\;\;\;\;\;=\;1200+19200\\\;\;\;\;\;\;\;\;\;=20400\\Maturity\;Value\;is\;Rs.\;20400.$

Q13. Katrina opened a recurring deposit account with a Nationalised Bank for a period of 2 years. If the bank pays interest at the rate of 6% per annum and the monthly instalment is 1,000, find the:

(i) interest earned in 2 years. (ii) matured value. [3] [2015]

Answer: (i) Rs. 1500 (ii) Rs. 25500

Step-by-step Explanation:

Rate of interest (r) = 6% p.a., Monthly Instalment (P) = Rs. 1000, Time in months (n) = 2 years = 2*12 = 24 months

$(i)\;I=\frac{P\times n(n+1)}{2\times12}\times\frac r{100}\\I=\frac{1000\times24\times25\times6}{2\times12\times100}\\I=250\times6\\I=1500\\Interest\;is\;Rs.\;1500\\\\(ii)\;A\;=\;I+Pn\\\;\;\;\;\;\;\;\;\;\;=1500+1000\times24\\\;\;\;\;\;\;\;\;\;\;=1500+24000\\\;\;\;\;\;\;\;\;\;\;=25500\\Maturity\;Amount\;is\;Rs.\;25500.$

Q14. Shahrukh opened a Recurring Deposit Account in a bank and deposited Rs.800 per month for 1 1/2 years. If he received Rs.15,084 at the time of maturity, find the rate of interest per annum.[2014]

Answer: 6% p.a.

Step-by-step Explanation:

Monthly Instalment (P) = Rs. 800, Time in months (n) = 1 1/2 years = 3/2*12 = 18 months, Maturity Amount (A) = Rs. 15084

$\;I\;=\;A-Pn\\I=15084-800\times18\\\;=15084-14400\\\;=684\\\\I=\frac{P\times n(n+1)}{2\times12}\times\frac r{100}\\684=\frac{800\times18\times19\times r}{2\times12\times100}\\684=114\times r\\\frac{684}{114}=r\\r=6\%\;p.a.\\Rate\;of\;Interest\;is\;6\%\;p.a.$

Q15. Mr. Britto deposits a certain sum of money each month in a Recurring Deposit Account of a bank. If the rate of interest is of 8% per annum and Mr. Britto gets Rs. 8088 from the bank after 3 years, find the value of his monthly installment. [3] [2013]

Rate of interest (r) = 8% p.a, Time in months (n) = 3 years = 3*12 = 36 months, Maturity Amount (A) = Rs. 8088

$\;I\;=\;A-Pn\\I=8088-P\times36\\I\;=8088-36P\\\\I=\frac{P\times n(n+1)}{2\times12}\times\frac r{100}\\8088-36P=\frac{P\times36\times37\times8}{2\times12\times100}\\8088-36P=\frac{P\times3\times37}{25}\\111P=202200-900P\\111P+900P=202200\\1011P=202200\\P=\frac{202200}{1011}\\P=200\\Monthly\;instalment\;is\;Rs.\;200$

Q16. Kiran deposited Rs. 200 per month for 36 months in a bank’s recurring deposit account. If the bank pays interest at the rate of 11% per annum, find the amount she gets on maturity.[3] [2012]

Answer: Rs. 8421

Step-by-step Explanation:

Rate of interest (r) = 11% p.a., Monthly Instalment (P) = Rs. 200, Time in months (n) = 36 months

$I=\frac{P\times n(n+1)}{2\times12}\times\frac r{100}\\\;=\frac{200\times36\times37\times11}{2\times12\times100}\\\;=33\times37\\\;=1221\\\\A\;=I+Pn\\\;\;\;\;=1221+200\times36\\\;\;\;\;=1221+7200\\\;\;\;\;=8421\\Monthly\;instalment\;is\;Rs.\;8421.$

Q17. Ahmed has a recurring deposit account in a bank. He deposits Rs. 2,500 per month for 2 years. If he gets Rs. 66,250 at the time of maturity, find

(i) The interest paid by the bank. (ii) The rate of interest. [3] [2011]

Answer: (i) Rs. 6250 (ii) 10%

Step-by-step Explanation:

Monthly Instalment (P) = Rs. 2500, Time in months (n) = 2 years = 2*12 = 24 months, Maturity Amount (A) = Rs. 66250

$(i)\;I=A-Pn\\I=66250-2500\times24\\I=66250-60000\\I=6250\\Interest\;is\;Rs.\;6250\\\\\\(ii)\;I=\frac{P\times n(n+1)}{2\times12}\times\frac r{100}\\6250=\frac{2500\times24\times25\times r}{2\times12\times100}\\\;6250=625\times r\\r=10\%\\Rate\;of\;interest\;is\;10\%\;p.a.$

Q18. Mr. Gupta opened a recurring deposit account in a bank. He deposited ₹ 2,500 per month for two years. At the time of maturity he got ₹ 67,500. Find:

(i) the total interest earned by Mr. Gupta. (ii) the rate of interest per annum. [4] [2010]

Answer: (i) Rs. 7500 (ii) 12% p.a.

Step-by-step explanation:

Monthly Instalment (P) = Rs. 2500, Time in months (n) = 2 years = 2*12 = 24 months, Maturity Amount (A) = Rs. 67500

$(i)\;I=A-Pn\\I=67500-2500\times24\\I=67500-60000\\I=7500\\Interest\;is\;Rs.\;7500\\\\\\(ii)\;I=\frac{P\times n(n+1)}{2\times12}\times\frac r{100}\\75000=\frac{2500\times24\times25\times r}{2\times12\times100}\\\;7500=625\times r\\r=12\%\\Rate\;of\;interest\;is\;12\%\;p.a.$

Subscribe to my YouTube channel for latest educational updates.

Sharing is caring!