ICSE Class 10 Previous Years Questions Mathematics Chapter-Banking/Recurring Deposit Account

The Brainbox Tutorials brings ICSE Class 10 Previous Years Questions from the chapter Banking/Recurring deposit account. Solving these PYQs will help you understand the pattern of questions asked in Board exams. It will also help you prepare for your upcoming Board Exams.

ICSE Class 10 Previous Years Questions Mathematics Chapter-Banking

Q1. Naveen deposits Rs.800 every month in a recurring deposit account for 6 months. If he receives Rs.4884 at the time of maturity, then the interest he earns is:
(a) Rs. 84 (b) Rs.42 (c) Rs.24 (d) Rs.284 [2023]

Answer: (a) Rs.84

Step-by-step Explanation:

Monthly Instalment (P) = Rs.800

Time in months (n) = 6 months

Maturity Amount (A) = Rs.4884

\[Interest\;=\;A\;-\;Pn\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;4884\;-\;800\times6\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;4884-4800\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;Rs.\;84\]

Q2. Salman deposits Rs.1000 every month in a recurring deposit account for 2 years. If he receives Rs.26000 on maturity, find:
(i) The total interest Salman earns (ii) The rate of interest [2023]

Answer: (i) Rs. 2000 (ii) 8%

Step-by-step explanation:

Monthly Instalment (P) = Rs. 1000 ; Time in months (n) = 2 years = 2*12=24 months, Maturity Amount (A) = Rs. 26000

\[(i)\;Interest\;=\;A\;-\;Pn\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;26000\;-\;1000\times24\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;26000-24000\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;Rs.\;2000\\(ii)\;I\;=\;\frac{P\times n(n+1)}{2\times12}\times\frac r{100}\\\;\;\;\;2000=\frac{1000\times24\times25\times r}{2\times12\times100}\\2000=250\;r\\\frac{2000}{250}=r\\8\;=\;r\\Rate\;of\;interest\;=\;8\%\]

Q3. Mohit opened a recurring deposit account in a bank for 2 years. He deposits Rs.1000 every month and receives Rs.25500 on maturity. The interest he earned in 2 years is:
Rs.13500 (b) Rs.3000 (c) Rs.24000 (d) Rs.1500 [2021 Semester- 1]

Answer: (d) Rs. 1500

Step-by-step Explanation:

Monthly Instalment (P) = Rs. 1000 ; Time in months (n) = 2 years = 2*12=24 months, Maturity Amount (A) = Rs. 25500

\[Interest\;=\;A\;-Pn\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;25500\;-\;1000\times24\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;=25500-24000\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;=1500\\Interest\;is\;Rs.\;1500\]

Q4. A man deposited Rs.500 per month for 6 months and received Rs 3,300 as the maturity value. The interest received by him is:-
1950 (b) 300 (c) 2800 (d) None of these [2021 Semester-1]

Answer: (b) 300

Step-by-step explanation:

Monthly Instalment (P) = Rs. 500 ; Time in months (n) = 6 months, Maturity Amount (A) = Rs. 3300

\[Interest\;=\;A\;-Pn\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;3300\;-\;500\times6\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;=3300-3000\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;=300\\Interest\;is\;Rs.\;300\]

Q5. Joseph has a recurring deposit account in a bank for two years at the rate of 8% per annum simple interest.
(i) If at the time of maturity Joseph receives Rs. 2000 as interest then the monthly instalment is:
Rs.1200 (b) Rs.600 (c) Rs.1000 (d) Rs.1600

(ii) The total amount deposited in the bank:
Rs.25000 (b) Rs.24000 (c) Rs.26000 (d) Rs.23000

(iii) The amount Joseph receives on maturity is:
Rs.27000 (b) Rs.25000 (c) Rs.26000 (d) Rs.28000

(iv) If the monthly instalment is Rs.100 and the rate of interest is 8%, in how many months Joseph will receive Rs.52 as interest?
18 (b) 30 (c) 12 (d) 6 [2021 Semester- I]

Answer (i): (c) Rs. 1000

Step-by-step explanation:

Interest (I) = Rs. 2000 ; Time in months (n) = 2 years= 2*12 = 24 months, Rate of Interest (r) = 8%

\[I\;=\;\frac{P\times n(n+1)}{2\times12}\times\frac r{100}\\2000=\frac{P\times24\times25\times8}{2\times12\times100}\\\frac{2000}2=P\\P=1000\\Monthly\;instalment\;is\;Rs.\;1000\]

Answer (ii): (b) Rs. 24000

Step-by-step Explanation:

Total money deposited in the Bank = P x n = 1000 x 24 = Rs. 24000

Answer (iii): (c) Rs. 26000

Step-by-step Explanation:

Maturity Amount = Interest + Pn

= 2000 + 24000 = Rs. 26000

Answer (iv): ()

Step-by-step explanation:

Monthly Instalment (P) = Rs. 100 ; Rate of interest(r) = 8%, Interest (I) = Rs. 52

\[I=\frac{P\times n(n+1)}{2\times12}\times\frac r{100}\\52=\frac{100\times n(n+1)\times8}{2\times12\times100}\\52=\frac{n(n+1)}3\\n^2+n=156\\n^2+n-156=0\\n^2+13n-12n-156=0\\n(n+13)-12(n+13)=0\\(n+13)(n-12)=0\\Either\;(n+13)=0\;\;OR\;(n-12)=0\\n=-13\;OR\;12\\n\;cannot\;be\;begative.\\Therefore,\;n\;=\;12\;months\]

Q6. A man deposited Rs. 1200 in a recurring deposit account for 1 year at 5% per annum simple interest. The interest earned by him on maturity is
14790 (b) 390 (c) 4680 (d) 780 [2021 Semester-I]

Answer: (b) Rs. 390

Step-by-step explanation:

Monthly Instalment (P) = Rs. 1200 ; Rate of interest(r) = 5%, Time in months (n) = 1 year = 1*12 = 12 months

\[I=\frac{P\times n(n+1)}{2\times12}\times\frac r{100}\\I=\frac{1200\times12\times13\times5}{2\times12\times100}\\I=390\\Therefore,\;Interest=\;Rs.\;390\]

You can also see video solutions of these questions here.

Q7. Mr. Sonu has a recurring deposit account and deposits Rs 750 per month for 2 years. If he gets Rs. 19125 at the time of maturity, find the rate of interest. [2020]

Answer: 6%

Step-by-step explanation:

Monthly Instalment (P) = Rs. 750 ; Maturity Amount(A) = Rs. 19125, Time in months (n) = 2 years = 2*12 = 24 months

\[Interest\;=\;A-Pn\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;=19125-750\times24\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;19125-18000\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;Rs.\;1125\\\\I=\frac{P\times n(n+1)}{2\times12}\times\frac r{100}\\1125=\frac{750\times24\times25\times r}{2\times12\times100}\\1125=\frac{375\;r}2\\375\;r=1125\times2\\r=\frac{1125\times2}{375}\\r=6\%\\Therefore,\;Rate\;of\;Interest=\;6\%\]

Q8. Rekha opened a recurring deposit account for 20 months. The rate of interest is 9% per annum and Rekha receives 441 as interest at the time of maturity. Find the amount Rekha deposited each month. [2019]

Answer: Rs. 280

Step-by-step explanation:

Rate of interest (r) = 9% ; Interest(I) = Rs. 441, Time in months (n) = 20 months

\[I=\frac{P\times n(n+1)}{2\times12}\times\frac r{100}\\441=\frac{P\times20\times21\times9}{2\times12\times100}\\441=\frac{P\times21\times3}{2\times4\times5}\\P=\frac{441\times2\times4\times5}{3\times21}\\P=280\\Therefore,\;monthly\;deposit\;=\;Rs.\;280.\]

Q9. Sonia had a recurring deposit account in a bank and deposited Rs.600 per month for 2 1/2 years. If the rate of interest was 10% p.a., find the maturity value of this account. [3] [2018]

Answer: Rs. 20325

Step-by-step explanation:

Rate of interest (r) = 10% ; Monthly instalment (P) = Rs. 600, Time in months (n) = 5/2 years = 5/2*12 = 30 months

\[I=\frac{P\times n(n+1)}{2\times12}\times\frac r{100}\\I=\frac{600\times30\times31\times10}{2\times12\times100}\\I=2325\\\\Maturity\;Amount\;=\;I\;+Pn\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;2325+600\times30\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;2325+18000\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=20325\\Therefore,\;Maturity\;Value\;is\;Rs.\;20325\]

Q10. Priyanka has a recurring deposit account of ₹ 1000 per month at 10% per annum. If she gets ₹ 5550 as interest at the time of maturity, find the total time for which account has held. [3] [2018]

Answer: 3 years

Step-by-step explanation:

Monthly instalment (P) = Rs. 1000, Rate of interest (r) = 10% ; Interest (I) = Rs. 5550

\[I=\frac{P\times n(n+1)}{2\times12}\times\frac r{100}\\5550=\frac{1000\times n(n+1)\times10}{2\times12\times100}\\5550=\frac{25\times n(n+1)}6\\n(n+1)=\frac{5550\times6}{25}\\n^2+n=1332\\n^2+n-1332=0\\n^2+37n-36n-1332=0\\n(n+37)-36(n+37)=0\\(n+37)(n-36)=0\\Euther\;n+37\;=0\;OR\;n-36=0\\Either\;n=-37\;or\;36\\months\;cannot\;be\;negative.\\Therefore,\;n\;=\;36\;months\;=\;3\;years\]

Q11. Mr. Richard has a recurring deposit account in a bank for 3 years at 7.5% p.a. simple interest. If he gets ₹ 8325 as interest at the time of maturity, find:

(i) the monthly deposit. (ii) the amount of maturity.[3] [2017]

Answer: (i) Rs. 2000 (ii) Rs. 80325

Step-by-step explanation:

Rate of interest (r) = 7.5%, Interest(I) = Rs. 8325, Time in months (n) = 3 years = 3*12 = 36 months

\[(i)\;I=\frac{P\times n(n+1)}{2\times12}\times\frac r{100}\\8325=\frac{P\times36\times37\times7.5}{2\times12\times100}\\8325=\frac{P\times9\times37}{2\times40}\\P=\frac{8325\times2\times40}{9\times37}\\P=1332\\P=2000\\Therefore,\;monthly\;deposit\;=\;Rs.\;2000\\\\(ii)\;A=\;I+Pn\\\;\;\;\;\;\;\;\;\;=\;8325+2000\times36\\\;\;\;\;\;\;\;\;\;=8325+72000\\\;\;\;\;\;\;\;\;\;=80325\\Maturity\;Value\;is\;Rs.\;80325\]

Q12. Mohan has a recurring deposit account in a bank for 2 years at 6% p.a. simple interest. If he gets Rs.1200 as interest at the time of maturity, find :

(i) the monthly installment. (ii) the amount of maturity.[3] [2016]

Answer: (i) Rs. 800 (ii) Rs. 20400

Step-by-step expanation:

Rate of interest (r) = 6%, Interest(I) = Rs. 1200, Time in months (n) = 2 years = 2*12 = 24 months

\[(i)\;I=\frac{P\times n(n+1)}{2\times12}\times\frac r{100}\\1200=\frac{P\times24\times25\times6}{2\times12\times100}\\1200=\frac{P\times3}2\\P=\frac{1200\times2}3\\P=800\\Therefore,\;monthly\;deposit\;=\;Rs.\;800\\\\(ii)\;A=\;I+Pn\\\;\;\;\;\;\;\;\;\;=\;1200+800\times24\\\;\;\;\;\;\;\;\;\;=\;1200+19200\\\;\;\;\;\;\;\;\;\;=20400\\Maturity\;Value\;is\;Rs.\;20400.\]

Q13. Katrina opened a recurring deposit account with a Nationalised Bank for a period of 2 years. If the bank pays interest at the rate of 6% per annum and the monthly instalment is 1,000, find the:

(i) interest earned in 2 years. (ii) matured value. [3] [2015]

Answer: (i) Rs. 1500 (ii) Rs. 25500

Step-by-step Explanation:

Rate of interest (r) = 6% p.a., Monthly Instalment (P) = Rs. 1000, Time in months (n) = 2 years = 2*12 = 24 months

\[(i)\;I=\frac{P\times n(n+1)}{2\times12}\times\frac r{100}\\I=\frac{1000\times24\times25\times6}{2\times12\times100}\\I=250\times6\\I=1500\\Interest\;is\;Rs.\;1500\\\\(ii)\;A\;=\;I+Pn\\\;\;\;\;\;\;\;\;\;\;=1500+1000\times24\\\;\;\;\;\;\;\;\;\;\;=1500+24000\\\;\;\;\;\;\;\;\;\;\;=25500\\Maturity\;Amount\;is\;Rs.\;25500.\]

Q14. Shahrukh opened a Recurring Deposit Account in a bank and deposited Rs.800 per month for 1 1/2 years. If he received Rs.15,084 at the time of maturity, find the rate of interest per annum.[2014]

Answer: 6% p.a.

Step-by-step Explanation:

Monthly Instalment (P) = Rs. 800, Time in months (n) = 1 1/2 years = 3/2*12 = 18 months, Maturity Amount (A) = Rs. 15084

\[\;I\;=\;A-Pn\\I=15084-800\times18\\\;=15084-14400\\\;=684\\\\I=\frac{P\times n(n+1)}{2\times12}\times\frac r{100}\\684=\frac{800\times18\times19\times r}{2\times12\times100}\\684=114\times r\\\frac{684}{114}=r\\r=6\%\;p.a.\\Rate\;of\;Interest\;is\;6\%\;p.a.\]

Q15. Mr. Britto deposits a certain sum of money each month in a Recurring Deposit Account of a bank. If the rate of interest is of 8% per annum and Mr. Britto gets Rs. 8088 from the bank after 3 years, find the value of his monthly installment. [3] [2013]

Rate of interest (r) = 8% p.a, Time in months (n) = 3 years = 3*12 = 36 months, Maturity Amount (A) = Rs. 8088

\[\;I\;=\;A-Pn\\I=8088-P\times36\\I\;=8088-36P\\\\I=\frac{P\times n(n+1)}{2\times12}\times\frac r{100}\\8088-36P=\frac{P\times36\times37\times8}{2\times12\times100}\\8088-36P=\frac{P\times3\times37}{25}\\111P=202200-900P\\111P+900P=202200\\1011P=202200\\P=\frac{202200}{1011}\\P=200\\Monthly\;instalment\;is\;Rs.\;200\]

Q16. Kiran deposited Rs. 200 per month for 36 months in a bank’s recurring deposit account. If the bank pays interest at the rate of 11% per annum, find the amount she gets on maturity.[3] [2012]

Answer: Rs. 8421

Step-by-step Explanation:

Rate of interest (r) = 11% p.a., Monthly Instalment (P) = Rs. 200, Time in months (n) = 36 months

\[I=\frac{P\times n(n+1)}{2\times12}\times\frac r{100}\\\;=\frac{200\times36\times37\times11}{2\times12\times100}\\\;=33\times37\\\;=1221\\\\A\;=I+Pn\\\;\;\;\;=1221+200\times36\\\;\;\;\;=1221+7200\\\;\;\;\;=8421\\Monthly\;instalment\;is\;Rs.\;8421.\]

Q17. Ahmed has a recurring deposit account in a bank. He deposits Rs. 2,500 per month for 2 years. If he gets Rs. 66,250 at the time of maturity, find

(i) The interest paid by the bank. (ii) The rate of interest. [3] [2011]

Answer: (i) Rs. 6250 (ii) 10%

Step-by-step Explanation:

Monthly Instalment (P) = Rs. 2500, Time in months (n) = 2 years = 2*12 = 24 months, Maturity Amount (A) = Rs. 66250

\[(i)\;I=A-Pn\\I=66250-2500\times24\\I=66250-60000\\I=6250\\Interest\;is\;Rs.\;6250\\\\\\(ii)\;I=\frac{P\times n(n+1)}{2\times12}\times\frac r{100}\\6250=\frac{2500\times24\times25\times r}{2\times12\times100}\\\;6250=625\times r\\r=10\%\\Rate\;of\;interest\;is\;10\%\;p.a.\]

Q18. Mr. Gupta opened a recurring deposit account in a bank. He deposited ₹ 2,500 per month for two years. At the time of maturity he got ₹ 67,500. Find:

(i) the total interest earned by Mr. Gupta. (ii) the rate of interest per annum. [4] [2010]

Answer: (i) Rs. 7500 (ii) 12% p.a.

Step-by-step explanation:

Monthly Instalment (P) = Rs. 2500, Time in months (n) = 2 years = 2*12 = 24 months, Maturity Amount (A) = Rs. 67500

\[(i)\;I=A-Pn\\I=67500-2500\times24\\I=67500-60000\\I=7500\\Interest\;is\;Rs.\;7500\\\\\\(ii)\;I=\frac{P\times n(n+1)}{2\times12}\times\frac r{100}\\75000=\frac{2500\times24\times25\times r}{2\times12\times100}\\\;7500=625\times r\\r=12\%\\Rate\;of\;interest\;is\;12\%\;p.a.\]

Subscribe to my YouTube channel for latest educational updates.

Sharing is caring!

Leave a Comment